Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{-1}^{1}y-y^{2}\mathrm{d}y
Whakamahia te āhuatanga tohatoha hei whakarea te 1-y ki te y.
\int y-y^{2}\mathrm{d}y
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int y\mathrm{d}y+\int -y^{2}\mathrm{d}y
Kōmitimititia te kīanga tapeke mā te kīanga.
\int y\mathrm{d}y-\int y^{2}\mathrm{d}y
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{y^{2}}{2}-\int y^{2}\mathrm{d}y
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y\mathrm{d}y ki te \frac{y^{2}}{2}.
\frac{y^{2}}{2}-\frac{y^{3}}{3}
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y^{2}\mathrm{d}y ki te \frac{y^{3}}{3}. Whakareatia -1 ki te \frac{y^{3}}{3}.
\frac{1^{2}}{2}-\frac{1^{3}}{3}-\left(\frac{\left(-1\right)^{2}}{2}-\frac{\left(-1\right)^{3}}{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{2}{3}
Whakarūnātia.