Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int -\frac{x^{3}}{2}+3x-2\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -\frac{x^{3}}{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int -2\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-\frac{\int x^{3}\mathrm{d}x}{2}+3\int x\mathrm{d}x+\int -2\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{x^{4}}{8}+3\int x\mathrm{d}x+\int -2\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia -\frac{1}{2} ki te \frac{x^{4}}{4}.
-\frac{x^{4}}{8}+\frac{3x^{2}}{2}+\int -2\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 3 ki te \frac{x^{2}}{2}.
-\frac{x^{4}}{8}+\frac{3x^{2}}{2}-2x
Kimihia te tau tōpū o -2 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-\frac{0.73^{4}}{8}+\frac{3}{2}\times 0.73^{2}-2\times 0.73-\left(-\frac{\left(-1\right)^{4}}{8}+\frac{3}{2}\left(-1\right)^{2}-2\left(-1\right)\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{3256918241}{800000000}
Whakarūnātia.