Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0\times 15}^{665}-x^{2}+2x+1-\frac{1}{2}x\mathrm{d}x
Hei kimi i te tauaro o -1+\frac{1}{2}x, kimihia te tauaro o ia taurangi.
\int _{0\times 15}^{665}-x^{2}+\frac{3}{2}x+1\mathrm{d}x
Pahekotia te 2x me -\frac{1}{2}x, ka \frac{3}{2}x.
\int _{0}^{665}-x^{2}+\frac{3}{2}x+1\mathrm{d}x
Whakareatia te 0 ki te 15, ka 0.
\int -x^{2}+\frac{3x}{2}+1\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -x^{2}\mathrm{d}x+\int \frac{3x}{2}\mathrm{d}x+\int 1\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-\int x^{2}\mathrm{d}x+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{x^{3}}{3}+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -1 ki te \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+\int 1\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia \frac{3}{2} ki te \frac{x^{2}}{2}.
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+x
Kimihia te tau tōpū o 1 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-\frac{665^{3}}{3}+\frac{3}{4}\times 665^{2}+665-\left(-\frac{0^{3}}{3}+\frac{3}{4}\times 0^{2}+0\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{1172330495}{12}
Whakarūnātia.