Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int x^{4}-\frac{x^{4}}{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x^{4}\mathrm{d}x+\int -\frac{x^{4}}{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int x^{4}\mathrm{d}x-\frac{\int x^{4}\mathrm{d}x}{2}
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{5}}{5}-\frac{\int x^{4}\mathrm{d}x}{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{4}\mathrm{d}x ki te \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{x^{5}}{10}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{4}\mathrm{d}x ki te \frac{x^{5}}{5}. Whakareatia -\frac{1}{2} ki te \frac{x^{5}}{5}.
\frac{x^{5}}{10}
Whakarūnātia.
\frac{1^{5}}{10}-\frac{1}{10}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{10}-\frac{\sqrt{2}}{80}
Whakarūnātia.