Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \left(x^{2}-1\right)e^{0x}\mathrm{d}x
Whakareatia te 0 ki te 2, ka 0.
\int \left(x^{2}-1\right)e^{0}\mathrm{d}x
Ko te tau i whakarea ki te kore ka hua ko te kore.
\int \left(x^{2}-1\right)\times 1\mathrm{d}x
Tātaihia te e mā te pū o 0, kia riro ko 1.
\int x^{2}-1\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-1 ki te 1.
\int x^{2}\mathrm{d}x+\int -1\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{x^{3}}{3}+\int -1\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{x^{3}}{3}-x
Kimihia te tau tōpū o -1 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}-x+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.