Aromātai
\frac{x^{3}}{3}-x+С
Kimi Pārōnaki e ai ki x
x^{2}-1
Tohaina
Kua tāruatia ki te papatopenga
\int \left(x^{2}-1\right)e^{0x}\mathrm{d}x
Whakareatia te 0 ki te 2, ka 0.
\int \left(x^{2}-1\right)e^{0}\mathrm{d}x
Ko te tau i whakarea ki te kore ka hua ko te kore.
\int \left(x^{2}-1\right)\times 1\mathrm{d}x
Tātaihia te e mā te pū o 0, kia riro ko 1.
\int x^{2}-1\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-1 ki te 1.
\int x^{2}\mathrm{d}x+\int -1\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{x^{3}}{3}+\int -1\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{x^{3}}{3}-x
Kimihia te tau tōpū o -1 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}-x+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}