Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \left(2x^{2}-x+2x-1\right)\left(x+9\right)\mathrm{d}x
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x+1 ki ia tau o 2x-1.
\int \left(2x^{2}+x-1\right)\left(x+9\right)\mathrm{d}x
Pahekotia te -x me 2x, ka x.
\int 2x^{3}+18x^{2}+x^{2}+9x-x-9\mathrm{d}x
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x^{2}+x-1 ki ia tau o x+9.
\int 2x^{3}+19x^{2}+9x-x-9\mathrm{d}x
Pahekotia te 18x^{2} me x^{2}, ka 19x^{2}.
\int 2x^{3}+19x^{2}+8x-9\mathrm{d}x
Pahekotia te 9x me -x, ka 8x.
\int 2x^{3}\mathrm{d}x+\int 19x^{2}\mathrm{d}x+\int 8x\mathrm{d}x+\int -9\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
2\int x^{3}\mathrm{d}x+19\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int -9\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{4}}{2}+19\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int -9\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia 2 ki te \frac{x^{4}}{4}.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+8\int x\mathrm{d}x+\int -9\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 19 ki te \frac{x^{3}}{3}.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}+\int -9\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 8 ki te \frac{x^{2}}{2}.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x
Kimihia te tau tōpū o -9 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.