Whakaoti mō C
C=С
x\neq 0
Whakaoti mō x
x\neq 0
C=С\text{ and }x\neq 0
Tohaina
Kua tāruatia ki te papatopenga
x\int 4x^{3}-\frac{1}{x^{2}}\mathrm{d}x=xx^{4}+1+xC
Whakareatia ngā taha e rua o te whārite ki te x.
x\int 4x^{3}-\frac{1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 4 kia riro ai te 5.
x\int \frac{4x^{3}x^{2}}{x^{2}}-\frac{1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4x^{3} ki te \frac{x^{2}}{x^{2}}.
x\int \frac{4x^{3}x^{2}-1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
Tā te mea he rite te tauraro o \frac{4x^{3}x^{2}}{x^{2}} me \frac{1}{x^{2}}, me tango rāua mā te tango i ō raua taurunga.
x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
Mahia ngā whakarea i roto o 4x^{3}x^{2}-1.
x^{5}+1+xC=x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1+xC=x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x-x^{5}
Tangohia te x^{5} mai i ngā taha e rua.
xC=x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x-x^{5}-1
Tangohia te 1 mai i ngā taha e rua.
xC=Сx
He hanga arowhānui tō te whārite.
\frac{xC}{x}=\frac{Сx}{x}
Whakawehea ngā taha e rua ki te x.
C=\frac{Сx}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
C=С
Whakawehe Сx ki te x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}