Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 3v^{5}\mathrm{d}v+\int -v\mathrm{d}v
Kōmitimititia te kīanga tapeke mā te kīanga.
3\int v^{5}\mathrm{d}v-\int v\mathrm{d}v
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{v^{6}}{2}-\int v\mathrm{d}v
Nā te mea \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int v^{5}\mathrm{d}v ki te \frac{v^{6}}{6}. Whakareatia 3 ki te \frac{v^{6}}{6}.
\frac{v^{6}-v^{2}}{2}
Nā te mea \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int v\mathrm{d}v ki te \frac{v^{2}}{2}. Whakareatia -1 ki te \frac{v^{2}}{2}.
\frac{v^{6}}{2}-\frac{v^{2}}{2}+С
Mēnā ko F\left(v\right) he pārōnaki kōaro o f\left(v\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(v\right) ka whakaaturia e F\left(v\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.