Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 6x^{2}+2x-15x-5\mathrm{d}x
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x-5 ki ia tau o 3x+1.
\int 6x^{2}-13x-5\mathrm{d}x
Pahekotia te 2x me -15x, ka -13x.
\int 6x^{2}\mathrm{d}x+\int -13x\mathrm{d}x+\int -5\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
6\int x^{2}\mathrm{d}x-13\int x\mathrm{d}x+\int -5\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
2x^{3}-13\int x\mathrm{d}x+\int -5\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 6 ki te \frac{x^{3}}{3}.
2x^{3}-\frac{13x^{2}}{2}+\int -5\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -13 ki te \frac{x^{2}}{2}.
2x^{3}-\frac{13x^{2}}{2}-5x
Kimihia te tau tōpū o -5 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
2x^{3}-\frac{13x^{2}}{2}-5x+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.