Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \left(2x+1\right)\left(-1\right)\mathrm{d}x
Tīkina te uara \cos(\pi ) mai i te ripanga uara pākoki.
\int -2x-1\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+1 ki te -1.
\int -2x\mathrm{d}x+\int -1\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-2\int x\mathrm{d}x+\int -1\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-x^{2}+\int -1\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -2 ki te \frac{x^{2}}{2}.
-x^{2}-x
Kimihia te tau tōpū o -1 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-x^{2}-x+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.