Aromātai
4xt^{2}-\frac{25x^{3}}{3}+С
Kimi Pārōnaki e ai ki x
4t^{2}-25x^{2}
Tohaina
Kua tāruatia ki te papatopenga
\int \left(2t\right)^{2}-\left(5x\right)^{2}\mathrm{d}x
Whakaarohia te \left(2t+5x\right)\left(2t-5x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\int 2^{2}t^{2}-\left(5x\right)^{2}\mathrm{d}x
Whakarohaina te \left(2t\right)^{2}.
\int 4t^{2}-\left(5x\right)^{2}\mathrm{d}x
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\int 4t^{2}-5^{2}x^{2}\mathrm{d}x
Whakarohaina te \left(5x\right)^{2}.
\int 4t^{2}-25x^{2}\mathrm{d}x
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\int 4t^{2}\mathrm{d}x+\int -25x^{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
4\int t^{2}\mathrm{d}x-25\int x^{2}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
4t^{2}x-25\int x^{2}\mathrm{d}x
Kimihia te tau tōpū o t^{2} mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
4t^{2}x-\frac{25x^{3}}{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -25 ki te \frac{x^{3}}{3}.
4t^{2}x-\frac{25x^{3}}{3}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}