Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 2\sqrt{x}\mathrm{d}x+\int -\sqrt[4]{x}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
2\int \sqrt{x}\mathrm{d}x-\int \sqrt[4]{x}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{4x^{\frac{3}{2}}}{3}-\int \sqrt[4]{x}\mathrm{d}x
Tuhia anō te \sqrt{x} hei x^{\frac{1}{2}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{\frac{1}{2}}\mathrm{d}x ki te \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Whakarūnātia. Whakareatia 2 ki te \frac{2x^{\frac{3}{2}}}{3}.
\frac{4x^{\frac{3}{2}}}{3}-\frac{4x^{\frac{5}{4}}}{5}
Tuhia anō te \sqrt[4]{x} hei x^{\frac{1}{4}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{\frac{1}{4}}\mathrm{d}x ki te \frac{x^{\frac{5}{4}}}{\frac{5}{4}}. Whakarūnātia. Whakareatia -1 ki te \frac{4x^{\frac{5}{4}}}{5}.
\frac{4x^{\frac{3}{2}}}{3}-\frac{4x^{\frac{5}{4}}}{5}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.