Aromātai
2\sin(x)+6\cos(x)+С
Kimi Pārōnaki e ai ki x
2\left(\cos(x)-3\sin(x)\right)
Tohaina
Kua tāruatia ki te papatopenga
\int 2\cos(x)\mathrm{d}x+\int -6\sin(x)\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
2\left(\int \cos(x)\mathrm{d}x-3\int \sin(x)\mathrm{d}x\right)
Whakatauwehea te pūmau i ēnei kīanga katoa.
2\left(\sin(x)-3\int \sin(x)\mathrm{d}x\right)
Whakamahia te \int \cos(x)\mathrm{d}x=\sin(x) mai i te ripanga o ngā tau tōpū pātahi kia whakaputa i te huanga.
2\left(\sin(x)+3\cos(x)\right)
Whakamahia te \int \sin(x)\mathrm{d}x=-\cos(x) mai i te ripanga o ngā tau tōpū pātahi kia whakaputa i te huanga. Whakareatia -6 ki te -\cos(x).
2\sin(x)+6\cos(x)+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}