Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 12e^{t}\mathrm{d}t+\int 7t\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
12\int e^{t}\mathrm{d}t+7\int t\mathrm{d}t
Whakatauwehea te pūmau i ēnei kīanga katoa.
12e^{t}+7\int t\mathrm{d}t
Whakamahia te \int e^{t}\mathrm{d}t=e^{t} mai i te ripanga o ngā tau tōpū pātahi kia whakaputa i te huanga.
12e^{t}+\frac{7t^{2}}{2}
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t\mathrm{d}t ki te \frac{t^{2}}{2}. Whakareatia 7 ki te \frac{t^{2}}{2}.
12e^{t}+\frac{7t^{2}}{2}+С
Mēnā ko F\left(t\right) he pārōnaki kōaro o f\left(t\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(t\right) ka whakaaturia e F\left(t\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.