Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int -7\sqrt{x}\mathrm{d}x+\int 5\sqrt[4]{x}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-7\int \sqrt{x}\mathrm{d}x+5\int \sqrt[4]{x}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{14x^{\frac{3}{2}}}{3}+5\int \sqrt[4]{x}\mathrm{d}x
Tuhia anō te \sqrt{x} hei x^{\frac{1}{2}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{\frac{1}{2}}\mathrm{d}x ki te \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Whakarūnātia. Whakareatia -7 ki te \frac{2x^{\frac{3}{2}}}{3}.
-\frac{14x^{\frac{3}{2}}}{3}+4x^{\frac{5}{4}}
Tuhia anō te \sqrt[4]{x} hei x^{\frac{1}{4}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{\frac{1}{4}}\mathrm{d}x ki te \frac{x^{\frac{5}{4}}}{\frac{5}{4}}. Whakarūnātia. Whakareatia 5 ki te \frac{4x^{\frac{5}{4}}}{5}.
-\frac{14x^{\frac{3}{2}}}{3}+4x^{\frac{5}{4}}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.