Tīpoka ki ngā ihirangi matua
Whakaoti mō c
Tick mark Image
Whakaoti mō x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x\int \frac{x^{2}}{2}-\frac{2}{x^{2}}\mathrm{d}x=xx^{3}+6\times 2+6xc
Me whakarea ngā taha e rua o te whārite ki te 6x, arā, te tauraro pātahi he tino iti rawa te kitea o 6,x.
6x\int \frac{x^{2}}{2}-\frac{2}{x^{2}}\mathrm{d}x=x^{4}+6\times 2+6xc
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
6x\int \frac{x^{2}x^{2}}{2x^{2}}-\frac{2\times 2}{2x^{2}}\mathrm{d}x=x^{4}+6\times 2+6xc
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me x^{2} ko 2x^{2}. Whakareatia \frac{x^{2}}{2} ki te \frac{x^{2}}{x^{2}}. Whakareatia \frac{2}{x^{2}} ki te \frac{2}{2}.
6x\int \frac{x^{2}x^{2}-2\times 2}{2x^{2}}\mathrm{d}x=x^{4}+6\times 2+6xc
Tā te mea he rite te tauraro o \frac{x^{2}x^{2}}{2x^{2}} me \frac{2\times 2}{2x^{2}}, me tango rāua mā te tango i ō raua taurunga.
6x\int \frac{x^{4}-4}{2x^{2}}\mathrm{d}x=x^{4}+6\times 2+6xc
Mahia ngā whakarea i roto o x^{2}x^{2}-2\times 2.
6x\int \frac{x^{4}-4}{2x^{2}}\mathrm{d}x=x^{4}+12+6xc
Whakareatia te 6 ki te 2, ka 12.
x^{4}+12+6xc=6x\int \frac{x^{4}-4}{2x^{2}}\mathrm{d}x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
12+6xc=6x\int \frac{x^{4}-4}{2x^{2}}\mathrm{d}x-x^{4}
Tangohia te x^{4} mai i ngā taha e rua.
6xc=6x\int \frac{x^{4}-4}{2x^{2}}\mathrm{d}x-x^{4}-12
Tangohia te 12 mai i ngā taha e rua.
6xc=Сx
He hanga arowhānui tō te whārite.
\frac{6xc}{6x}=\frac{Сx}{6x}
Whakawehea ngā taha e rua ki te 6x.
c=\frac{Сx}{6x}
Mā te whakawehe ki te 6x ka wetekia te whakareanga ki te 6x.
c=\frac{С}{6}
Whakawehe Сx ki te 6x.