Whakaoti mō c
c=С
x\neq 0
Whakaoti mō x
x\neq 0
c=С\text{ and }x\neq 0
Tohaina
Kua tāruatia ki te papatopenga
6x\int \frac{x^{2}}{2}-\frac{2}{x^{2}}\mathrm{d}x=xx^{3}+6\times 2+6xc
Me whakarea ngā taha e rua o te whārite ki te 6x, arā, te tauraro pātahi he tino iti rawa te kitea o 6,x.
6x\int \frac{x^{2}}{2}-\frac{2}{x^{2}}\mathrm{d}x=x^{4}+6\times 2+6xc
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
6x\int \frac{x^{2}x^{2}}{2x^{2}}-\frac{2\times 2}{2x^{2}}\mathrm{d}x=x^{4}+6\times 2+6xc
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me x^{2} ko 2x^{2}. Whakareatia \frac{x^{2}}{2} ki te \frac{x^{2}}{x^{2}}. Whakareatia \frac{2}{x^{2}} ki te \frac{2}{2}.
6x\int \frac{x^{2}x^{2}-2\times 2}{2x^{2}}\mathrm{d}x=x^{4}+6\times 2+6xc
Tā te mea he rite te tauraro o \frac{x^{2}x^{2}}{2x^{2}} me \frac{2\times 2}{2x^{2}}, me tango rāua mā te tango i ō raua taurunga.
6x\int \frac{x^{4}-4}{2x^{2}}\mathrm{d}x=x^{4}+6\times 2+6xc
Mahia ngā whakarea i roto o x^{2}x^{2}-2\times 2.
6x\int \frac{x^{4}-4}{2x^{2}}\mathrm{d}x=x^{4}+12+6xc
Whakareatia te 6 ki te 2, ka 12.
x^{4}+12+6xc=6x\int \frac{x^{4}-4}{2x^{2}}\mathrm{d}x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
12+6xc=6x\int \frac{x^{4}-4}{2x^{2}}\mathrm{d}x-x^{4}
Tangohia te x^{4} mai i ngā taha e rua.
6xc=6x\int \frac{x^{4}-4}{2x^{2}}\mathrm{d}x-x^{4}-12
Tangohia te 12 mai i ngā taha e rua.
6xc=Сx
He hanga arowhānui tō te whārite.
\frac{6xc}{6x}=\frac{Сx}{6x}
Whakawehea ngā taha e rua ki te 6x.
c=\frac{Сx}{6x}
Mā te whakawehe ki te 6x ka wetekia te whakareanga ki te 6x.
c=\frac{С}{6}
Whakawehe Сx ki te 6x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}