Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{9}{\sqrt[4]{t}}\mathrm{d}t+\int \frac{4}{t^{7}}\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
9\int \frac{1}{\sqrt[4]{t}}\mathrm{d}t+4\int \frac{1}{t^{7}}\mathrm{d}t
Whakatauwehea te pūmau i ēnei kīanga katoa.
12t^{\frac{3}{4}}+4\int \frac{1}{t^{7}}\mathrm{d}t
Tuhia anō te \frac{1}{\sqrt[4]{t}} hei t^{-\frac{1}{4}}. Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{-\frac{1}{4}}\mathrm{d}t ki te \frac{t^{\frac{3}{4}}}{\frac{3}{4}}. Whakarūnātia. Whakareatia 9 ki te \frac{4t^{\frac{3}{4}}}{3}.
12t^{\frac{3}{4}}-\frac{2}{3t^{6}}
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int \frac{1}{t^{7}}\mathrm{d}t ki te -\frac{1}{6t^{6}}. Whakareatia 4 ki te -\frac{1}{6t^{6}}.
12t^{\frac{3}{4}}-\frac{2}{3t^{6}}+С
Mēnā ko F\left(t\right) he pārōnaki kōaro o f\left(t\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(t\right) ka whakaaturia e F\left(t\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.