Aromātai
12t^{\frac{3}{4}}-\frac{2}{3t^{6}}+С
Kimi Pārōnaki e ai ki t
\frac{9}{\sqrt[4]{t}}+\frac{4}{t^{7}}
Tohaina
Kua tāruatia ki te papatopenga
\int \frac{9}{\sqrt[4]{t}}\mathrm{d}t+\int \frac{4}{t^{7}}\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
9\int \frac{1}{\sqrt[4]{t}}\mathrm{d}t+4\int \frac{1}{t^{7}}\mathrm{d}t
Whakatauwehea te pūmau i ēnei kīanga katoa.
12t^{\frac{3}{4}}+4\int \frac{1}{t^{7}}\mathrm{d}t
Tuhia anō te \frac{1}{\sqrt[4]{t}} hei t^{-\frac{1}{4}}. Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{-\frac{1}{4}}\mathrm{d}t ki te \frac{t^{\frac{3}{4}}}{\frac{3}{4}}. Whakarūnātia. Whakareatia 9 ki te \frac{4t^{\frac{3}{4}}}{3}.
12t^{\frac{3}{4}}-\frac{2}{3t^{6}}
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int \frac{1}{t^{7}}\mathrm{d}t ki te -\frac{1}{6t^{6}}. Whakareatia 4 ki te -\frac{1}{6t^{6}}.
12t^{\frac{3}{4}}-\frac{2}{3t^{6}}+С
Mēnā ko F\left(t\right) he pārōnaki kōaro o f\left(t\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(t\right) ka whakaaturia e F\left(t\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}