Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{4}{\sqrt[3]{t}}\mathrm{d}t+\int \frac{3}{t^{6}}\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
4\int \frac{1}{\sqrt[3]{t}}\mathrm{d}t+3\int \frac{1}{t^{6}}\mathrm{d}t
Whakatauwehea te pūmau i ēnei kīanga katoa.
6t^{\frac{2}{3}}+3\int \frac{1}{t^{6}}\mathrm{d}t
Tuhia anō te \frac{1}{\sqrt[3]{t}} hei t^{-\frac{1}{3}}. Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{-\frac{1}{3}}\mathrm{d}t ki te \frac{t^{\frac{2}{3}}}{\frac{2}{3}}. Whakarūnātia. Whakareatia 4 ki te \frac{3t^{\frac{2}{3}}}{2}.
6t^{\frac{2}{3}}-\frac{\frac{3}{t^{5}}}{5}
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int \frac{1}{t^{6}}\mathrm{d}t ki te -\frac{1}{5t^{5}}. Whakareatia 3 ki te -\frac{1}{5t^{5}}.
6t^{\frac{2}{3}}-\frac{3}{5t^{5}}
Whakarūnātia.
6t^{\frac{2}{3}}-\frac{3}{5t^{5}}+С
Mēnā ko F\left(t\right) he pārōnaki kōaro o f\left(t\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(t\right) ka whakaaturia e F\left(t\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.