Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Tohaina

\int \frac{\frac{1}{6}+\frac{3}{6}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Ko te maha noa iti rawa atu o 6 me 2 ko 6. Me tahuri \frac{1}{6} me \frac{1}{2} ki te hautau me te tautūnga 6.
\int \frac{\frac{1+3}{6}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Tā te mea he rite te tauraro o \frac{1}{6} me \frac{3}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\int \frac{\frac{4}{6}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Tāpirihia te 1 ki te 3, ka 4.
\int \frac{\frac{2}{3}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\int \frac{\frac{2}{3}}{\frac{6}{3}-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Me tahuri te 2 ki te hautau \frac{6}{3}.
\int \frac{\frac{2}{3}}{\frac{6-1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
\int \frac{\frac{2}{3}}{\frac{5}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Tangohia te 1 i te 6, ka 5.
\int \frac{2}{3}\times \frac{3}{5}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Whakawehe \frac{2}{3} ki te \frac{5}{3} mā te whakarea \frac{2}{3} ki te tau huripoki o \frac{5}{3}.
\int \frac{2\times 3}{3\times 5}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Me whakarea te \frac{2}{3} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\int \frac{2}{5}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Me whakakore tahi te 3 i te taurunga me te tauraro.
\int \frac{2}{5}-\left(\frac{3}{6}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{1}{2} me \frac{1}{6} ki te hautau me te tautūnga 6.
\int \frac{2}{5}-\frac{3-1}{6}\times \frac{6}{5}\mathrm{d}x
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{1}{6}, me tango rāua mā te tango i ō raua taurunga.
\int \frac{2}{5}-\frac{2}{6}\times \frac{6}{5}\mathrm{d}x
Tangohia te 1 i te 3, ka 2.
\int \frac{2}{5}-\frac{1}{3}\times \frac{6}{5}\mathrm{d}x
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\int \frac{2}{5}-\frac{1\times 6}{3\times 5}\mathrm{d}x
Me whakarea te \frac{1}{3} ki te \frac{6}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\int \frac{2}{5}-\frac{6}{15}\mathrm{d}x
Mahia ngā whakarea i roto i te hautanga \frac{1\times 6}{3\times 5}.
\int \frac{2}{5}-\frac{2}{5}\mathrm{d}x
Whakahekea te hautanga \frac{6}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\int 0\mathrm{d}x
Tangohia te \frac{2}{5} i te \frac{2}{5}, ka 0.
0
Kimihia te tau tōpū o 0 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.