Aromātai
\frac{11x}{126}+С
Kimi Pārōnaki e ai ki x
\frac{11}{126} = 0.0873015873015873
Tohaina
Kua tāruatia ki te papatopenga
\int \frac{5}{42}-\frac{1}{7}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Whakahekea te hautanga \frac{3}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\int \frac{5}{42}-\frac{6}{42}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Ko te maha noa iti rawa atu o 42 me 7 ko 42. Me tahuri \frac{5}{42} me \frac{1}{7} ki te hautau me te tautūnga 42.
\int \frac{5-6}{42}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Tā te mea he rite te tauraro o \frac{5}{42} me \frac{6}{42}, me tango rāua mā te tango i ō raua taurunga.
\int -\frac{1}{42}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Tangohia te 6 i te 5, ka -1.
\int -\frac{1}{42}+\frac{1}{7}-\frac{2}{63}\mathrm{d}x
Whakahekea te hautanga \frac{4}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\int -\frac{1}{42}+\frac{6}{42}-\frac{2}{63}\mathrm{d}x
Ko te maha noa iti rawa atu o 42 me 7 ko 42. Me tahuri -\frac{1}{42} me \frac{1}{7} ki te hautau me te tautūnga 42.
\int \frac{-1+6}{42}-\frac{2}{63}\mathrm{d}x
Tā te mea he rite te tauraro o -\frac{1}{42} me \frac{6}{42}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\int \frac{5}{42}-\frac{2}{63}\mathrm{d}x
Tāpirihia te -1 ki te 6, ka 5.
\int \frac{15}{126}-\frac{4}{126}\mathrm{d}x
Ko te maha noa iti rawa atu o 42 me 63 ko 126. Me tahuri \frac{5}{42} me \frac{2}{63} ki te hautau me te tautūnga 126.
\int \frac{15-4}{126}\mathrm{d}x
Tā te mea he rite te tauraro o \frac{15}{126} me \frac{4}{126}, me tango rāua mā te tango i ō raua taurunga.
\int \frac{11}{126}\mathrm{d}x
Tangohia te 4 i te 15, ka 11.
\frac{11x}{126}
Kimihia te tau tōpū o \frac{11}{126} mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{11x}{126}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}