Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{5}{42}-\frac{1}{7}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Whakahekea te hautanga \frac{3}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\int \frac{5}{42}-\frac{6}{42}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Ko te maha noa iti rawa atu o 42 me 7 ko 42. Me tahuri \frac{5}{42} me \frac{1}{7} ki te hautau me te tautūnga 42.
\int \frac{5-6}{42}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Tā te mea he rite te tauraro o \frac{5}{42} me \frac{6}{42}, me tango rāua mā te tango i ō raua taurunga.
\int -\frac{1}{42}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Tangohia te 6 i te 5, ka -1.
\int -\frac{1}{42}+\frac{1}{7}-\frac{2}{63}\mathrm{d}x
Whakahekea te hautanga \frac{4}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\int -\frac{1}{42}+\frac{6}{42}-\frac{2}{63}\mathrm{d}x
Ko te maha noa iti rawa atu o 42 me 7 ko 42. Me tahuri -\frac{1}{42} me \frac{1}{7} ki te hautau me te tautūnga 42.
\int \frac{-1+6}{42}-\frac{2}{63}\mathrm{d}x
Tā te mea he rite te tauraro o -\frac{1}{42} me \frac{6}{42}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\int \frac{5}{42}-\frac{2}{63}\mathrm{d}x
Tāpirihia te -1 ki te 6, ka 5.
\int \frac{15}{126}-\frac{4}{126}\mathrm{d}x
Ko te maha noa iti rawa atu o 42 me 63 ko 126. Me tahuri \frac{5}{42} me \frac{2}{63} ki te hautau me te tautūnga 126.
\int \frac{15-4}{126}\mathrm{d}x
Tā te mea he rite te tauraro o \frac{15}{126} me \frac{4}{126}, me tango rāua mā te tango i ō raua taurunga.
\int \frac{11}{126}\mathrm{d}x
Tangohia te 4 i te 15, ka 11.
\frac{11x}{126}
Kimihia te tau tōpū o \frac{11}{126} mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{11x}{126}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.