Tīpoka ki ngā ihirangi matua
Whakaoti mō c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{\frac{4}{2}}tc
Whakareatia ngā taha e rua o te whārite ki te 4.
4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{2}tc
Whakawehea te 4 ki te 2, kia riro ko 2.
4\int \sqrt[3]{3t}\mathrm{d}t=3^{2}t^{2}tc
Whakarohaina te \left(3t\right)^{2}.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{2}tc
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{3}c
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
9t^{3}c=4\int \sqrt[3]{3t}\mathrm{d}t
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
9t^{3}c=4\sqrt[3]{3}t^{\frac{4}{3}}+4С
He hanga arowhānui tō te whārite.
\frac{9t^{3}c}{9t^{3}}=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
Whakawehea ngā taha e rua ki te 9t^{3}.
c=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
Mā te whakawehe ki te 9t^{3} ka wetekia te whakareanga ki te 9t^{3}.
c=\frac{4\left(\frac{\left(3t\right)^{\frac{4}{3}}}{3}+С\right)}{9t^{3}}
Whakawehe \frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С ki te 9t^{3}.