Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{x}{\sqrt{x}+1}+С\right)t=\sqrt{x}
He hanga arowhānui tō te whārite.
\frac{\left(\frac{x}{\sqrt{x}+1}+С\right)t}{\frac{x}{\sqrt{x}+1}+С}=\frac{\sqrt{x}}{\frac{x}{\sqrt{x}+1}+С}
Whakawehea ngā taha e rua ki te \left(1+\sqrt{x}\right)^{-1}x+С.
t=\frac{\sqrt{x}}{\frac{x}{\sqrt{x}+1}+С}
Mā te whakawehe ki te \left(1+\sqrt{x}\right)^{-1}x+С ka wetekia te whakareanga ki te \left(1+\sqrt{x}\right)^{-1}x+С.
t=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}С+x+С_{1}}
Whakawehe \sqrt{x} ki te \left(1+\sqrt{x}\right)^{-1}x+С.