Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\int \frac{1}{\sqrt[3]{x^{2}}}\mathrm{d}x}{\sqrt[3]{8}}
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{3\sqrt[3]{x}}{\sqrt[3]{8}}
Tuhia anō te \frac{1}{x^{\frac{2}{3}}} hei x^{-\frac{2}{3}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{-\frac{2}{3}}\mathrm{d}x ki te \frac{x^{\frac{1}{3}}}{\frac{1}{3}}. Whakarūnāhia me te tahuri mai i te āhua taupū ki te āhua pūtake.
\frac{3\sqrt[3]{x}}{2}
Whakarūnātia.
\frac{3\sqrt[3]{x}}{2}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.