Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6\int \frac{1}{\sqrt[3]{x}}\mathrm{d}x
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
9x^{\frac{2}{3}}
Tuhia anō te \frac{1}{\sqrt[3]{x}} hei x^{-\frac{1}{3}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{-\frac{1}{3}}\mathrm{d}x ki te \frac{x^{\frac{2}{3}}}{\frac{2}{3}}. Whakarūnātia. Whakareatia 6 ki te \frac{3x^{\frac{2}{3}}}{2}.
9x^{\frac{2}{3}}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.