Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{\left(2x-3\right)\left(3x+5\right)^{2}}{3x+5}\mathrm{d}x
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{18x^{3}+33x^{2}-40x-75}{3x+5}.
\int \left(2x-3\right)\left(3x+5\right)\mathrm{d}x
Me whakakore tahi te 3x+5 i te taurunga me te tauraro.
\int 6x^{2}+x-15\mathrm{d}x
Me whakaroha te kīanga.
\int 6x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int -15\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
6\int x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int -15\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
2x^{3}+\int x\mathrm{d}x+\int -15\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 6 ki te \frac{x^{3}}{3}.
2x^{3}+\frac{x^{2}}{2}+\int -15\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}.
2x^{3}+\frac{x^{2}}{2}-15x
Kimihia te tau tōpū o -15 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-15x+\frac{x^{2}}{2}+2x^{3}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.