Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{-3x^{0}}{-6x^{0\times 5}+18}\mathrm{d}x
Whakareatia te 0 ki te 5, ka 0.
\int \frac{-3}{-6x^{0\times 5}+18}\mathrm{d}x
Tātaihia te x mā te pū o 0, kia riro ko 1.
\int \frac{-3}{-6x^{0}+18}\mathrm{d}x
Whakareatia te 0 ki te 5, ka 0.
\int \frac{-3}{-6+18}\mathrm{d}x
Tātaihia te x mā te pū o 0, kia riro ko 1.
\int \frac{-3}{12}\mathrm{d}x
Tāpirihia te -6 ki te 18, ka 12.
\int -\frac{1}{4}\mathrm{d}x
Whakahekea te hautanga \frac{-3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{x}{4}
Kimihia te tau tōpū o -\frac{1}{4} mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-\frac{x}{4}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.