Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\gamma \left(\gamma -2\right)
Tauwehea te \gamma .
\gamma ^{2}-2\gamma =0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
\gamma =\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
\gamma =\frac{-\left(-2\right)±2}{2}
Tuhia te pūtakerua o te \left(-2\right)^{2}.
\gamma =\frac{2±2}{2}
Ko te tauaro o -2 ko 2.
\gamma =\frac{4}{2}
Nā, me whakaoti te whārite \gamma =\frac{2±2}{2} ina he tāpiri te ±. Tāpiri 2 ki te 2.
\gamma =2
Whakawehe 4 ki te 2.
\gamma =\frac{0}{2}
Nā, me whakaoti te whārite \gamma =\frac{2±2}{2} ina he tango te ±. Tango 2 mai i 2.
\gamma =0
Whakawehe 0 ki te 2.
\gamma ^{2}-2\gamma =\left(\gamma -2\right)\gamma
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te 0 mō te x_{2}.