\gamma ^ { 2 } = \operatorname { arcos } ( \frac { 55 ^ { 2 } + 76 ^ { 2 } + 93812 } { 2 ( 55 ) ( 76 ) }
Whakaoti mō a
\left\{\begin{matrix}a=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}\text{, }&r\neq 0\\a\in \mathrm{R}\text{, }&\gamma =0\text{ and }r=0\end{matrix}\right.
Whakaoti mō r
\left\{\begin{matrix}r=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}\text{, }&a\neq 0\\r\in \mathrm{R}\text{, }&\gamma =0\text{ and }a=0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93812}{2\times 55\times 76})
Tātaihia te 55 mā te pū o 2, kia riro ko 3025.
\gamma ^{2}=ar\cos(\frac{3025+5776+93812}{2\times 55\times 76})
Tātaihia te 76 mā te pū o 2, kia riro ko 5776.
\gamma ^{2}=ar\cos(\frac{8801+93812}{2\times 55\times 76})
Tāpirihia te 3025 ki te 5776, ka 8801.
\gamma ^{2}=ar\cos(\frac{102613}{2\times 55\times 76})
Tāpirihia te 8801 ki te 93812, ka 102613.
\gamma ^{2}=ar\cos(\frac{102613}{110\times 76})
Whakareatia te 2 ki te 55, ka 110.
\gamma ^{2}=ar\cos(\frac{102613}{8360})
Whakareatia te 110 ki te 76, ka 8360.
ar\cos(\frac{102613}{8360})=\gamma ^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\cos(\frac{102613}{8360})ra=\gamma ^{2}
He hanga arowhānui tō te whārite.
\frac{\cos(\frac{102613}{8360})ra}{\cos(\frac{102613}{8360})r}=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}
Whakawehea ngā taha e rua ki te r\cos(\frac{102613}{8360}).
a=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}
Mā te whakawehe ki te r\cos(\frac{102613}{8360}) ka wetekia te whakareanga ki te r\cos(\frac{102613}{8360}).
\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93812}{2\times 55\times 76})
Tātaihia te 55 mā te pū o 2, kia riro ko 3025.
\gamma ^{2}=ar\cos(\frac{3025+5776+93812}{2\times 55\times 76})
Tātaihia te 76 mā te pū o 2, kia riro ko 5776.
\gamma ^{2}=ar\cos(\frac{8801+93812}{2\times 55\times 76})
Tāpirihia te 3025 ki te 5776, ka 8801.
\gamma ^{2}=ar\cos(\frac{102613}{2\times 55\times 76})
Tāpirihia te 8801 ki te 93812, ka 102613.
\gamma ^{2}=ar\cos(\frac{102613}{110\times 76})
Whakareatia te 2 ki te 55, ka 110.
\gamma ^{2}=ar\cos(\frac{102613}{8360})
Whakareatia te 110 ki te 76, ka 8360.
ar\cos(\frac{102613}{8360})=\gamma ^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\cos(\frac{102613}{8360})ar=\gamma ^{2}
He hanga arowhānui tō te whārite.
\frac{\cos(\frac{102613}{8360})ar}{\cos(\frac{102613}{8360})a}=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}
Whakawehea ngā taha e rua ki te a\cos(\frac{102613}{8360}).
r=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}
Mā te whakawehe ki te a\cos(\frac{102613}{8360}) ka wetekia te whakareanga ki te a\cos(\frac{102613}{8360}).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}