Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93812}{2\times 55\times 76})
Tātaihia te 55 mā te pū o 2, kia riro ko 3025.
\gamma ^{2}=ar\cos(\frac{3025+5776+93812}{2\times 55\times 76})
Tātaihia te 76 mā te pū o 2, kia riro ko 5776.
\gamma ^{2}=ar\cos(\frac{8801+93812}{2\times 55\times 76})
Tāpirihia te 3025 ki te 5776, ka 8801.
\gamma ^{2}=ar\cos(\frac{102613}{2\times 55\times 76})
Tāpirihia te 8801 ki te 93812, ka 102613.
\gamma ^{2}=ar\cos(\frac{102613}{110\times 76})
Whakareatia te 2 ki te 55, ka 110.
\gamma ^{2}=ar\cos(\frac{102613}{8360})
Whakareatia te 110 ki te 76, ka 8360.
ar\cos(\frac{102613}{8360})=\gamma ^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\cos(\frac{102613}{8360})ra=\gamma ^{2}
He hanga arowhānui tō te whārite.
\frac{\cos(\frac{102613}{8360})ra}{\cos(\frac{102613}{8360})r}=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}
Whakawehea ngā taha e rua ki te r\cos(\frac{102613}{8360}).
a=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}
Mā te whakawehe ki te r\cos(\frac{102613}{8360}) ka wetekia te whakareanga ki te r\cos(\frac{102613}{8360}).
\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93812}{2\times 55\times 76})
Tātaihia te 55 mā te pū o 2, kia riro ko 3025.
\gamma ^{2}=ar\cos(\frac{3025+5776+93812}{2\times 55\times 76})
Tātaihia te 76 mā te pū o 2, kia riro ko 5776.
\gamma ^{2}=ar\cos(\frac{8801+93812}{2\times 55\times 76})
Tāpirihia te 3025 ki te 5776, ka 8801.
\gamma ^{2}=ar\cos(\frac{102613}{2\times 55\times 76})
Tāpirihia te 8801 ki te 93812, ka 102613.
\gamma ^{2}=ar\cos(\frac{102613}{110\times 76})
Whakareatia te 2 ki te 55, ka 110.
\gamma ^{2}=ar\cos(\frac{102613}{8360})
Whakareatia te 110 ki te 76, ka 8360.
ar\cos(\frac{102613}{8360})=\gamma ^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\cos(\frac{102613}{8360})ar=\gamma ^{2}
He hanga arowhānui tō te whārite.
\frac{\cos(\frac{102613}{8360})ar}{\cos(\frac{102613}{8360})a}=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}
Whakawehea ngā taha e rua ki te a\cos(\frac{102613}{8360}).
r=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}
Mā te whakawehe ki te a\cos(\frac{102613}{8360}) ka wetekia te whakareanga ki te a\cos(\frac{102613}{8360}).