Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{5}}{y^{5}}-\frac{1}{y^{5}})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{y^{5}}{y^{5}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{5}-1}{y^{5}})
Tā te mea he rite te tauraro o \frac{y^{5}}{y^{5}} me \frac{1}{y^{5}}, me tango rāua mā te tango i ō raua taurunga.
\frac{y^{5}\frac{\mathrm{d}}{\mathrm{d}y}(y^{5}-1)-\left(y^{5}-1\right)\frac{\mathrm{d}}{\mathrm{d}y}(y^{5})}{\left(y^{5}\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{y^{5}\times 5y^{5-1}-\left(y^{5}-1\right)\times 5y^{5-1}}{\left(y^{5}\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{y^{5}\times 5y^{4}-\left(y^{5}-1\right)\times 5y^{4}}{\left(y^{5}\right)^{2}}
Mahia ngā tātaitanga.
\frac{y^{5}\times 5y^{4}-\left(y^{5}\times 5y^{4}-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{5y^{5+4}-\left(5y^{5+4}-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{5y^{9}-\left(5y^{9}-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Mahia ngā tātaitanga.
\frac{5y^{9}-5y^{9}-\left(-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(5-5\right)y^{9}+\left(-\left(-5\right)\right)y^{4}}{\left(y^{5}\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
-\frac{-5y^{4}}{\left(y^{5}\right)^{2}}
Tango 5 mai i 5.
-\frac{-5y^{4}}{y^{5\times 2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
\frac{\left(-\left(-5\right)\right)y^{4}}{y^{10}}
Whakareatia 5 ki te 2.
\left(-\frac{-5}{1}\right)y^{4-10}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
5y^{-6}
Mahia ngā tātaitanga.