Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+\frac{10000}{x})
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x}{x}+\frac{10000}{x})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2x^{2} ki te \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x+10000}{x})
Tā te mea he rite te tauraro o \frac{2x^{2}x}{x} me \frac{10000}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{3}+10000}{x})
Mahia ngā whakarea i roto o 2x^{2}x+10000.
\left(2x^{3}+10000\right)\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}+10000)
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
\left(2x^{3}+10000\right)\left(-1\right)x^{-1-1}+\frac{1}{x}\times 3\times 2x^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(2x^{3}+10000\right)\left(-1\right)x^{-2}+\frac{1}{x}\times 6x^{2}
Whakarūnātia.
2x^{3}\left(-1\right)x^{-2}+10000\left(-1\right)x^{-2}+\frac{1}{x}\times 6x^{2}
Whakareatia 2x^{3}+10000 ki te -x^{-2}.
-2x^{3-2}-10000x^{-2}+6x^{-1+2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
-2x^{1}-10000x^{-2}+6x^{1}
Whakarūnātia.
-2x-10000x^{-2}+6x
Mō tētahi kupu t, t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+\frac{10000}{x})
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x}{x}+\frac{10000}{x})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2x^{2} ki te \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x+10000}{x})
Tā te mea he rite te tauraro o \frac{2x^{2}x}{x} me \frac{10000}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{3}+10000}{x})
Mahia ngā whakarea i roto o 2x^{2}x+10000.
\frac{x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}+10000)-\left(2x^{3}+10000\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})}{\left(x^{1}\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{x^{1}\times 3\times 2x^{3-1}-\left(2x^{3}+10000\right)x^{1-1}}{\left(x^{1}\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{x^{1}\times 6x^{2}-\left(2x^{3}+10000\right)x^{0}}{\left(x^{1}\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\times 6x^{2}-\left(2x^{3}x^{0}+10000x^{0}\right)}{\left(x^{1}\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{6x^{1+2}-\left(2x^{3}+10000x^{0}\right)}{\left(x^{1}\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{6x^{3}-\left(2x^{3}+10000x^{0}\right)}{\left(x^{1}\right)^{2}}
Mahia ngā tātaitanga.
\frac{6x^{3}-2x^{3}-10000x^{0}}{\left(x^{1}\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(6-2\right)x^{3}-10000x^{0}}{\left(x^{1}\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{4x^{3}-10000x^{0}}{\left(x^{1}\right)^{2}}
Tango 2 mai i 6.
\frac{4\left(x^{3}-2500x^{0}\right)}{\left(x^{1}\right)^{2}}
Tauwehea te 4.
\frac{4\left(x^{3}-2500x^{0}\right)}{1^{2}x^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
\frac{4\left(x^{3}-2500x^{0}\right)}{x^{2}}
Hīkina te 1 ki te pū 2.
\frac{4\left(x^{3}-2500\times 1\right)}{x^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{4\left(x^{3}-2500\right)}{x^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.