Aromātai
24x+5
Kimi Pārōnaki e ai ki x
24
Tohaina
Kua tāruatia ki te papatopenga
\left(4x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+2)+\left(3x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(4x^{1}-1)
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
\left(4x^{1}-1\right)\times 3x^{1-1}+\left(3x^{1}+2\right)\times 4x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(4x^{1}-1\right)\times 3x^{0}+\left(3x^{1}+2\right)\times 4x^{0}
Whakarūnātia.
4x^{1}\times 3x^{0}-3x^{0}+\left(3x^{1}+2\right)\times 4x^{0}
Whakareatia 4x^{1}-1 ki te 3x^{0}.
4x^{1}\times 3x^{0}-3x^{0}+3x^{1}\times 4x^{0}+2\times 4x^{0}
Whakareatia 3x^{1}+2 ki te 4x^{0}.
3\times 4x^{1}+3\left(-1\right)x^{0}+3\times 4x^{1}+2\times 4x^{0}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
12x^{1}-3x^{0}+12x^{1}+8x^{0}
Whakarūnātia.
\left(12+12\right)x^{1}+\left(-3+8\right)x^{0}
Pahekotia ngā kīanga tau ōrite.
24x^{1}+\left(-3+8\right)x^{0}
Tāpiri 12 ki te 12.
24x^{1}+5x^{0}
Tāpiri -3 ki te 8.
24x+5x^{0}
Mō tētahi kupu t, t^{1}=t.
24x+5\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
24x+5
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}