Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+1)+\left(-2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
x^{2}\left(-2\right)x^{1-1}+\left(-2x^{1}+1\right)\times 2x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
x^{2}\left(-2\right)x^{0}+\left(-2x^{1}+1\right)\times 2x^{1}
Whakarūnātia.
x^{2}\left(-2\right)x^{0}-2x^{1}\times 2x^{1}+2x^{1}
Whakareatia -2x^{1}+1 ki te 2x^{1}.
-2x^{2}-2\times 2x^{1+1}+2x^{1}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
-2x^{2}-4x^{2}+2x^{1}
Whakarūnātia.
\left(-2-4\right)x^{2}+2x^{1}
Pahekotia ngā kīanga tau ōrite.
-6x^{2}+2x^{1}
Tāpiri -2 ki te -4.
-6x^{2}+2x
Mō tētahi kupu t, t^{1}=t.