Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(x^{2}+x^{1}+1\right)^{2-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1}+1)
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
2\left(x^{2}+x^{1}+1\right)^{1}\left(2x^{2-1}+x^{1-1}\right)
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(x^{2}+x^{1}+1\right)^{1}\left(4x^{1}+2x^{0}\right)
Whakarūnātia.
\left(x^{2}+x+1\right)\left(4x+2x^{0}\right)
Mō tētahi kupu t, t^{1}=t.
\left(x^{2}+x+1\right)\left(4x+2\times 1\right)
Mō tētahi kupu t mahue te 0, t^{0}=1.
\left(x^{2}+x+1\right)\left(4x+2\right)
Mō tētahi kupu t, t\times 1=t me 1t=t.