Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x^{2}-2\right)\times 2}{x-5})
Tuhia te \frac{3x^{2}-2}{x-5}\times 2 hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x^{2}-4}{x-5})
Whakamahia te āhuatanga tohatoha hei whakarea te 3x^{2}-2 ki te 2.
\frac{\left(x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{2}-4)-\left(6x^{2}-4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-5)}{\left(x^{1}-5\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}-5\right)\times 2\times 6x^{2-1}-\left(6x^{2}-4\right)x^{1-1}}{\left(x^{1}-5\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}-5\right)\times 12x^{1}-\left(6x^{2}-4\right)x^{0}}{\left(x^{1}-5\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\times 12x^{1}-5\times 12x^{1}-\left(6x^{2}x^{0}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{12x^{1+1}-5\times 12x^{1}-\left(6x^{2}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{12x^{2}-60x^{1}-\left(6x^{2}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Mahia ngā tātaitanga.
\frac{12x^{2}-60x^{1}-6x^{2}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(12-6\right)x^{2}-60x^{1}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{6x^{2}-60x^{1}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Tango 6 mai i 12.
\frac{6x^{2}-60x-\left(-4x^{0}\right)}{\left(x-5\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{6x^{2}-60x-\left(-4\right)}{\left(x-5\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.