Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{x^{2}}-\frac{2x}{x^{2}})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2} me x ko x^{2}. Whakareatia \frac{2}{x} ki te \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-2x}{x^{2}})
Tā te mea he rite te tauraro o \frac{2}{x^{2}} me \frac{2x}{x^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+2)-\left(-2x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})}{\left(x^{2}\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{x^{2}\left(-2\right)x^{1-1}-\left(-2x^{1}+2\right)\times 2x^{2-1}}{\left(x^{2}\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{x^{2}\left(-2\right)x^{0}-\left(-2x^{1}+2\right)\times 2x^{1}}{\left(x^{2}\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{2}\left(-2\right)x^{0}-\left(-2x^{1}\times 2x^{1}+2\times 2x^{1}\right)}{\left(x^{2}\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-2x^{2}-\left(-2\times 2x^{1+1}+2\times 2x^{1}\right)}{\left(x^{2}\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-2x^{2}-\left(-4x^{2}+4x^{1}\right)}{\left(x^{2}\right)^{2}}
Mahia ngā tātaitanga.
\frac{-2x^{2}-\left(-4x^{2}\right)-4x^{1}}{\left(x^{2}\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(-2-\left(-4\right)\right)x^{2}-4x^{1}}{\left(x^{2}\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{2x^{2}-4x^{1}}{\left(x^{2}\right)^{2}}
Tango -4 mai i -2.
\frac{2x\left(x^{1}-2x^{0}\right)}{\left(x^{2}\right)^{2}}
Tauwehea te 2x.
\frac{2x\left(x^{1}-2x^{0}\right)}{x^{2\times 2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
\frac{2x\left(x^{1}-2x^{0}\right)}{x^{4}}
Whakareatia 2 ki te 2.
\frac{2\left(x^{1}-2x^{0}\right)}{x^{4-1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{2\left(x^{1}-2x^{0}\right)}{x^{3}}
Tango 1 mai i 4.
\frac{2\left(x-2x^{0}\right)}{x^{3}}
Mō tētahi kupu t, t^{1}=t.
\frac{2\left(x-2\times 1\right)}{x^{3}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{2\left(x-2\right)}{x^{3}}
Mō tētahi kupu t, t\times 1=t me 1t=t.