Aromātai
\frac{3136}{\left(15x+56\right)^{2}}
Kimi Pārōnaki e ai ki x
-\frac{94080}{\left(15x+56\right)^{3}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\frac{1}{x}+\frac{8}{56}+\frac{7}{56}})
Ko te maha noa iti rawa atu o 7 me 8 ko 56. Me tahuri \frac{1}{7} me \frac{1}{8} ki te hautau me te tautūnga 56.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\frac{1}{x}+\frac{8+7}{56}})
Tā te mea he rite te tauraro o \frac{8}{56} me \frac{7}{56}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\frac{1}{x}+\frac{15}{56}})
Tāpirihia te 8 ki te 7, ka 15.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\frac{56}{56x}+\frac{15x}{56x}})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x me 56 ko 56x. Whakareatia \frac{1}{x} ki te \frac{56}{56}. Whakareatia \frac{15}{56} ki te \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\frac{56+15x}{56x}})
Tā te mea he rite te tauraro o \frac{56}{56x} me \frac{15x}{56x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{56x}{56+15x})
Whakawehe 1 ki te \frac{56+15x}{56x} mā te whakarea 1 ki te tau huripoki o \frac{56+15x}{56x}.
\frac{\left(15x^{1}+56\right)\frac{\mathrm{d}}{\mathrm{d}x}(56x^{1})-56x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(15x^{1}+56)}{\left(15x^{1}+56\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(15x^{1}+56\right)\times 56x^{1-1}-56x^{1}\times 15x^{1-1}}{\left(15x^{1}+56\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(15x^{1}+56\right)\times 56x^{0}-56x^{1}\times 15x^{0}}{\left(15x^{1}+56\right)^{2}}
Mahia ngā tātaitanga.
\frac{15x^{1}\times 56x^{0}+56\times 56x^{0}-56x^{1}\times 15x^{0}}{\left(15x^{1}+56\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{15\times 56x^{1}+56\times 56x^{0}-56\times 15x^{1}}{\left(15x^{1}+56\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{840x^{1}+3136x^{0}-840x^{1}}{\left(15x^{1}+56\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(840-840\right)x^{1}+3136x^{0}}{\left(15x^{1}+56\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{3136x^{0}}{\left(15x^{1}+56\right)^{2}}
Tango 840 mai i 840.
\frac{3136x^{0}}{\left(15x+56\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{3136\times 1}{\left(15x+56\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{3136}{\left(15x+56\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}