Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(3x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-x^{3})-\left(x^{4}-x^{3}\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+1)}{\left(3x^{1}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(3x^{1}+1\right)\left(4x^{4-1}+3\left(-1\right)x^{3-1}\right)-\left(x^{4}-x^{3}\right)\times 3x^{1-1}}{\left(3x^{1}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(3x^{1}+1\right)\left(4x^{3}-3x^{2}\right)-\left(x^{4}-x^{3}\right)\times 3x^{0}}{\left(3x^{1}+1\right)^{2}}
Whakarūnātia.
\frac{3x^{1}\times 4x^{3}+3x^{1}\left(-3\right)x^{2}+4x^{3}-3x^{2}-\left(x^{4}-x^{3}\right)\times 3x^{0}}{\left(3x^{1}+1\right)^{2}}
Whakareatia 3x^{1}+1 ki te 4x^{3}-3x^{2}.
\frac{3x^{1}\times 4x^{3}+3x^{1}\left(-3\right)x^{2}+4x^{3}-3x^{2}-\left(x^{4}\times 3x^{0}-x^{3}\times 3x^{0}\right)}{\left(3x^{1}+1\right)^{2}}
Whakareatia x^{4}-x^{3} ki te 3x^{0}.
\frac{3\times 4x^{1+3}+3\left(-3\right)x^{1+2}+4x^{3}-3x^{2}-\left(3x^{4}-3x^{3}\right)}{\left(3x^{1}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{12x^{4}-9x^{3}+4x^{3}-3x^{2}-\left(3x^{4}-3x^{3}\right)}{\left(3x^{1}+1\right)^{2}}
Whakarūnātia.
\frac{9x^{4}-6x^{3}+4x^{3}-3x^{2}}{\left(3x^{1}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{9x^{4}-6x^{3}+4x^{3}-3x^{2}}{\left(3x+1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.