Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-x}{x^{3}-x^{2}-x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-1\right)\left(x+1\right)})
Me whakakore tahi te x-1 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{x^{2}-1})
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
\frac{\left(x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)}{\left(x^{2}-1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-1\right)x^{1-1}-x^{1}\times 2x^{2-1}}{\left(x^{2}-1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-1\right)x^{0}-x^{1}\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{2}x^{0}-x^{0}-x^{1}\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{x^{2}-x^{0}-2x^{1+1}}{\left(x^{2}-1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{x^{2}-x^{0}-2x^{2}}{\left(x^{2}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(1-2\right)x^{2}-x^{0}}{\left(x^{2}-1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-x^{2}-x^{0}}{\left(x^{2}-1\right)^{2}}
Tango 2 mai i 1.
\frac{-x^{2}-1}{\left(x^{2}-1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.