Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+7)-\left(x^{2}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-5)}{\left(x^{1}-5\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}-5\right)\times 2x^{2-1}-\left(x^{2}+7\right)x^{1-1}}{\left(x^{1}-5\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}-5\right)\times 2x^{1}-\left(x^{2}+7\right)x^{0}}{\left(x^{1}-5\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\times 2x^{1}-5\times 2x^{1}-\left(x^{2}x^{0}+7x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2x^{1+1}-5\times 2x^{1}-\left(x^{2}+7x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2x^{2}-10x^{1}-\left(x^{2}+7x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Mahia ngā tātaitanga.
\frac{2x^{2}-10x^{1}-x^{2}-7x^{0}}{\left(x^{1}-5\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(2-1\right)x^{2}-10x^{1}-7x^{0}}{\left(x^{1}-5\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{x^{2}-10x^{1}-7x^{0}}{\left(x^{1}-5\right)^{2}}
Tango 1 mai i 2.
\frac{x^{2}-10x-7x^{0}}{\left(x-5\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{x^{2}-10x-7\times 1}{\left(x-5\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{x^{2}-10x-7}{\left(x-5\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.