Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{y}{0.01^{2}\left(x-105\right)^{2}}=z
Whakarohaina te \left(0.01\left(x-105\right)\right)^{2}.
\frac{y}{0.0001\left(x-105\right)^{2}}=z
Tātaihia te 0.01 mā te pū o 2, kia riro ko 0.0001.
\frac{y}{0.0001\left(x^{2}-210x+11025\right)}=z
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-105\right)^{2}.
\frac{y}{0.0001x^{2}-0.021x+1.1025}=z
Whakamahia te āhuatanga tohatoha hei whakarea te 0.0001 ki te x^{2}-210x+11025.
\frac{1}{\frac{x^{2}}{10000}-\frac{21x}{1000}+1.1025}y=z
He hanga arowhānui tō te whārite.
\frac{\frac{1}{\frac{x^{2}}{10000}-\frac{21x}{1000}+1.1025}y\left(\frac{x^{2}}{10000}-\frac{21x}{1000}+1.1025\right)}{1}=\frac{z\left(\frac{x^{2}}{10000}-\frac{21x}{1000}+1.1025\right)}{1}
Whakawehea ngā taha e rua ki te \left(0.0001x^{2}-0.021x+1.1025\right)^{-1}.
y=\frac{z\left(\frac{x^{2}}{10000}-\frac{21x}{1000}+1.1025\right)}{1}
Mā te whakawehe ki te \left(0.0001x^{2}-0.021x+1.1025\right)^{-1} ka wetekia te whakareanga ki te \left(0.0001x^{2}-0.021x+1.1025\right)^{-1}.
y=\frac{z\left(x-105\right)^{2}}{10000}
Whakawehe z ki te \left(0.0001x^{2}-0.021x+1.1025\right)^{-1}.