Aromātai
0
Tauwehe
0
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac{ x-y }{ xy } + \frac{ y-z }{ yz } - \frac{ x-z }{ xz }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(x-y\right)z}{xyz}+\frac{\left(y-z\right)x}{xyz}-\frac{x-z}{xz}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o xy me yz ko xyz. Whakareatia \frac{x-y}{xy} ki te \frac{z}{z}. Whakareatia \frac{y-z}{yz} ki te \frac{x}{x}.
\frac{\left(x-y\right)z+\left(y-z\right)x}{xyz}-\frac{x-z}{xz}
Tā te mea he rite te tauraro o \frac{\left(x-y\right)z}{xyz} me \frac{\left(y-z\right)x}{xyz}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{xz-yz+yx-zx}{xyz}-\frac{x-z}{xz}
Mahia ngā whakarea i roto o \left(x-y\right)z+\left(y-z\right)x.
\frac{-yz+yx}{xyz}-\frac{x-z}{xz}
Whakakotahitia ngā kupu rite i xz-yz+yx-zx.
\frac{y\left(x-z\right)}{xyz}-\frac{x-z}{xz}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-yz+yx}{xyz}.
\frac{x-z}{xz}-\frac{x-z}{xz}
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{x-z-\left(x-z\right)}{xz}
Tā te mea he rite te tauraro o \frac{x-z}{xz} me \frac{x-z}{xz}, me tango rāua mā te tango i ō raua taurunga.
\frac{x-z-x+z}{xz}
Mahia ngā whakarea i roto o x-z-\left(x-z\right).
\frac{0}{xz}
Whakakotahitia ngā kupu rite i x-z-x+z.
0
Ina whakawehea te kore ki te tau ehara i te kore ka kore tonu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}