\frac{ x-4 }{ x+3 } = \frac{ }{ { x }^{ 2 } +5x+6 }
Whakaoti mō x
x=\sqrt{10}+1\approx 4.16227766
x=1-\sqrt{10}\approx -2.16227766
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac{ x-4 }{ x+3 } = \frac{ }{ { x }^{ 2 } +5x+6 }
Tohaina
Kua tāruatia ki te papatopenga
\left(x+2\right)\left(x-4\right)=1
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+3,x^{2}+5x+6.
x^{2}-2x-8=1
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-4 ka whakakotahi i ngā kupu rite.
x^{2}-2x-8-1=0
Tangohia te 1 mai i ngā taha e rua.
x^{2}-2x-9=0
Tangohia te 1 i te -8, ka -9.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+36}}{2}
Whakareatia -4 ki te -9.
x=\frac{-\left(-2\right)±\sqrt{40}}{2}
Tāpiri 4 ki te 36.
x=\frac{-\left(-2\right)±2\sqrt{10}}{2}
Tuhia te pūtakerua o te 40.
x=\frac{2±2\sqrt{10}}{2}
Ko te tauaro o -2 ko 2.
x=\frac{2\sqrt{10}+2}{2}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{10}}{2} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{10}.
x=\sqrt{10}+1
Whakawehe 2+2\sqrt{10} ki te 2.
x=\frac{2-2\sqrt{10}}{2}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{10}}{2} ina he tango te ±. Tango 2\sqrt{10} mai i 2.
x=1-\sqrt{10}
Whakawehe 2-2\sqrt{10} ki te 2.
x=\sqrt{10}+1 x=1-\sqrt{10}
Kua oti te whārite te whakatau.
\left(x+2\right)\left(x-4\right)=1
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+3,x^{2}+5x+6.
x^{2}-2x-8=1
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-4 ka whakakotahi i ngā kupu rite.
x^{2}-2x=1+8
Me tāpiri te 8 ki ngā taha e rua.
x^{2}-2x=9
Tāpirihia te 1 ki te 8, ka 9.
x^{2}-2x+1=9+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=10
Tāpiri 9 ki te 1.
\left(x-1\right)^{2}=10
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\sqrt{10} x-1=-\sqrt{10}
Whakarūnātia.
x=\sqrt{10}+1 x=1-\sqrt{10}
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}