Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2}-x+1 me x+1 ko \left(x+1\right)\left(x^{2}-x+1\right). Whakareatia \frac{x-2}{x^{2}-x+1} ki te \frac{x+1}{x+1}. Whakareatia \frac{1}{x+1} ki te \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Tā te mea he rite te tauraro o \frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)} me \frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}+x-2x-2-x^{2}+x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Mahia ngā whakarea i roto o \left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right).
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Whakakotahitia ngā kupu rite i x^{2}+x-2x-2-x^{2}+x-1.
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Tauwehea te x^{3}+1.
\frac{-3+x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Tā te mea he rite te tauraro o \frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)} me \frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Whakakotahitia ngā kupu rite i -3+x^{2}+x+3.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x}{x^{2}-x+1}
Me whakakore tahi te x+1 i te taurunga me te tauraro.
\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2}-x+1 me x+1 ko \left(x+1\right)\left(x^{2}-x+1\right). Whakareatia \frac{x-2}{x^{2}-x+1} ki te \frac{x+1}{x+1}. Whakareatia \frac{1}{x+1} ki te \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Tā te mea he rite te tauraro o \frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)} me \frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}+x-2x-2-x^{2}+x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Mahia ngā whakarea i roto o \left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right).
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Whakakotahitia ngā kupu rite i x^{2}+x-2x-2-x^{2}+x-1.
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Tauwehea te x^{3}+1.
\frac{-3+x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Tā te mea he rite te tauraro o \frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)} me \frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Whakakotahitia ngā kupu rite i -3+x^{2}+x+3.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x}{x^{2}-x+1}
Me whakakore tahi te x+1 i te taurunga me te tauraro.