Aromātai
\frac{x}{x^{2}-x+1}
Whakaroha
\frac{x}{x^{2}-x+1}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2}-x+1 me x+1 ko \left(x+1\right)\left(x^{2}-x+1\right). Whakareatia \frac{x-2}{x^{2}-x+1} ki te \frac{x+1}{x+1}. Whakareatia \frac{1}{x+1} ki te \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Tā te mea he rite te tauraro o \frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)} me \frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}+x-2x-2-x^{2}+x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Mahia ngā whakarea i roto o \left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right).
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Whakakotahitia ngā kupu rite i x^{2}+x-2x-2-x^{2}+x-1.
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Tauwehea te x^{3}+1.
\frac{-3+x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Tā te mea he rite te tauraro o \frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)} me \frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Whakakotahitia ngā kupu rite i -3+x^{2}+x+3.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x}{x^{2}-x+1}
Me whakakore tahi te x+1 i te taurunga me te tauraro.
\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2}-x+1 me x+1 ko \left(x+1\right)\left(x^{2}-x+1\right). Whakareatia \frac{x-2}{x^{2}-x+1} ki te \frac{x+1}{x+1}. Whakareatia \frac{1}{x+1} ki te \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Tā te mea he rite te tauraro o \frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)} me \frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}+x-2x-2-x^{2}+x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Mahia ngā whakarea i roto o \left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right).
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Whakakotahitia ngā kupu rite i x^{2}+x-2x-2-x^{2}+x-1.
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Tauwehea te x^{3}+1.
\frac{-3+x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Tā te mea he rite te tauraro o \frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)} me \frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Whakakotahitia ngā kupu rite i -3+x^{2}+x+3.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x}{x^{2}-x+1}
Me whakakore tahi te x+1 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}