Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\left(x-1\right)+15\left(x-2\right)=10x+30
Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2,3.
6x-6+15\left(x-2\right)=10x+30
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x-1.
6x-6+15x-30=10x+30
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te x-2.
21x-6-30=10x+30
Pahekotia te 6x me 15x, ka 21x.
21x-36=10x+30
Tangohia te 30 i te -6, ka -36.
21x-36-10x=30
Tangohia te 10x mai i ngā taha e rua.
11x-36=30
Pahekotia te 21x me -10x, ka 11x.
11x=30+36
Me tāpiri te 36 ki ngā taha e rua.
11x=66
Tāpirihia te 30 ki te 36, ka 66.
x=\frac{66}{11}
Whakawehea ngā taha e rua ki te 11.
x=6
Whakawehea te 66 ki te 11, kia riro ko 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}