Whakaoti mō x
x=\frac{\sqrt{13}-1}{6}\approx 0.434258546
x=\frac{-\sqrt{13}-1}{6}\approx -0.767591879
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-1\right)\left(x-1\right)=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+1,x-1.
\left(x-1\right)^{2}=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
Whakareatia te x-1 ki te x-1, ka \left(x-1\right)^{2}.
\left(x-1\right)^{2}=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
Whakareatia te 2x+1 ki te 2x+1, ka \left(2x+1\right)^{2}.
x^{2}-2x+1=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1=4x^{2}+4x+1+\left(x-1\right)\left(2x+1\right)\times 3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
x^{2}-2x+1=4x^{2}+4x+1+\left(2x^{2}-x-1\right)\times 3
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te 2x+1 ka whakakotahi i ngā kupu rite.
x^{2}-2x+1=4x^{2}+4x+1+6x^{2}-3x-3
Whakamahia te āhuatanga tohatoha hei whakarea te 2x^{2}-x-1 ki te 3.
x^{2}-2x+1=10x^{2}+4x+1-3x-3
Pahekotia te 4x^{2} me 6x^{2}, ka 10x^{2}.
x^{2}-2x+1=10x^{2}+x+1-3
Pahekotia te 4x me -3x, ka x.
x^{2}-2x+1=10x^{2}+x-2
Tangohia te 3 i te 1, ka -2.
x^{2}-2x+1-10x^{2}=x-2
Tangohia te 10x^{2} mai i ngā taha e rua.
-9x^{2}-2x+1=x-2
Pahekotia te x^{2} me -10x^{2}, ka -9x^{2}.
-9x^{2}-2x+1-x=-2
Tangohia te x mai i ngā taha e rua.
-9x^{2}-3x+1=-2
Pahekotia te -2x me -x, ka -3x.
-9x^{2}-3x+1+2=0
Me tāpiri te 2 ki ngā taha e rua.
-9x^{2}-3x+3=0
Tāpirihia te 1 ki te 2, ka 3.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-9\right)\times 3}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, -3 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-9\right)\times 3}}{2\left(-9\right)}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+36\times 3}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-\left(-3\right)±\sqrt{9+108}}{2\left(-9\right)}
Whakareatia 36 ki te 3.
x=\frac{-\left(-3\right)±\sqrt{117}}{2\left(-9\right)}
Tāpiri 9 ki te 108.
x=\frac{-\left(-3\right)±3\sqrt{13}}{2\left(-9\right)}
Tuhia te pūtakerua o te 117.
x=\frac{3±3\sqrt{13}}{2\left(-9\right)}
Ko te tauaro o -3 ko 3.
x=\frac{3±3\sqrt{13}}{-18}
Whakareatia 2 ki te -9.
x=\frac{3\sqrt{13}+3}{-18}
Nā, me whakaoti te whārite x=\frac{3±3\sqrt{13}}{-18} ina he tāpiri te ±. Tāpiri 3 ki te 3\sqrt{13}.
x=\frac{-\sqrt{13}-1}{6}
Whakawehe 3+3\sqrt{13} ki te -18.
x=\frac{3-3\sqrt{13}}{-18}
Nā, me whakaoti te whārite x=\frac{3±3\sqrt{13}}{-18} ina he tango te ±. Tango 3\sqrt{13} mai i 3.
x=\frac{\sqrt{13}-1}{6}
Whakawehe 3-3\sqrt{13} ki te -18.
x=\frac{-\sqrt{13}-1}{6} x=\frac{\sqrt{13}-1}{6}
Kua oti te whārite te whakatau.
\left(x-1\right)\left(x-1\right)=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+1,x-1.
\left(x-1\right)^{2}=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
Whakareatia te x-1 ki te x-1, ka \left(x-1\right)^{2}.
\left(x-1\right)^{2}=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
Whakareatia te 2x+1 ki te 2x+1, ka \left(2x+1\right)^{2}.
x^{2}-2x+1=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1=4x^{2}+4x+1+\left(x-1\right)\left(2x+1\right)\times 3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
x^{2}-2x+1=4x^{2}+4x+1+\left(2x^{2}-x-1\right)\times 3
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te 2x+1 ka whakakotahi i ngā kupu rite.
x^{2}-2x+1=4x^{2}+4x+1+6x^{2}-3x-3
Whakamahia te āhuatanga tohatoha hei whakarea te 2x^{2}-x-1 ki te 3.
x^{2}-2x+1=10x^{2}+4x+1-3x-3
Pahekotia te 4x^{2} me 6x^{2}, ka 10x^{2}.
x^{2}-2x+1=10x^{2}+x+1-3
Pahekotia te 4x me -3x, ka x.
x^{2}-2x+1=10x^{2}+x-2
Tangohia te 3 i te 1, ka -2.
x^{2}-2x+1-10x^{2}=x-2
Tangohia te 10x^{2} mai i ngā taha e rua.
-9x^{2}-2x+1=x-2
Pahekotia te x^{2} me -10x^{2}, ka -9x^{2}.
-9x^{2}-2x+1-x=-2
Tangohia te x mai i ngā taha e rua.
-9x^{2}-3x+1=-2
Pahekotia te -2x me -x, ka -3x.
-9x^{2}-3x=-2-1
Tangohia te 1 mai i ngā taha e rua.
-9x^{2}-3x=-3
Tangohia te 1 i te -2, ka -3.
\frac{-9x^{2}-3x}{-9}=-\frac{3}{-9}
Whakawehea ngā taha e rua ki te -9.
x^{2}+\left(-\frac{3}{-9}\right)x=-\frac{3}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
x^{2}+\frac{1}{3}x=-\frac{3}{-9}
Whakahekea te hautanga \frac{-3}{-9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{1}{3}x=\frac{1}{3}
Whakahekea te hautanga \frac{-3}{-9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{1}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{13}{36}
Tāpiri \frac{1}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{6}\right)^{2}=\frac{13}{36}
Tauwehea x^{2}+\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{13}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{6}=\frac{\sqrt{13}}{6} x+\frac{1}{6}=-\frac{\sqrt{13}}{6}
Whakarūnātia.
x=\frac{\sqrt{13}-1}{6} x=\frac{-\sqrt{13}-1}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}