Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-1+\left(x-1\right)\times 4=x+3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+2x-3,x+3,x-1.
x-1+4x-4=x+3
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 4.
5x-1-4=x+3
Pahekotia te x me 4x, ka 5x.
5x-5=x+3
Tangohia te 4 i te -1, ka -5.
5x-5-x=3
Tangohia te x mai i ngā taha e rua.
4x-5=3
Pahekotia te 5x me -x, ka 4x.
4x=3+5
Me tāpiri te 5 ki ngā taha e rua.
4x=8
Tāpirihia te 3 ki te 5, ka 8.
x=\frac{8}{4}
Whakawehea ngā taha e rua ki te 4.
x=2
Whakawehea te 8 ki te 4, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}