Aromātai
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Whakaroha
\frac{x^{4}}{625}-\frac{x^{3}}{625}-\frac{x}{25}+\frac{1}{25}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(x-1\right)\left(\left(\frac{x}{5}\right)^{3}-\frac{1}{5}\right)}{5}
Whakawehe x-1 ki te \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} mā te whakarea x-1 ki te tau huripoki o \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}}.
\frac{\left(x-1\right)\left(\frac{x^{3}}{5^{3}}-\frac{1}{5}\right)}{5}
Kia whakarewa i te \frac{x}{5} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(x-1\right)\left(\frac{x^{3}}{125}-\frac{25}{125}\right)}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5^{3} me 5 ko 125. Whakareatia \frac{1}{5} ki te \frac{25}{25}.
\frac{\left(x-1\right)\times \frac{x^{3}-25}{125}}{5}
Tā te mea he rite te tauraro o \frac{x^{3}}{125} me \frac{25}{125}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5}
Tuhia te \left(x-1\right)\times \frac{x^{3}-25}{125} hei hautanga kotahi.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{125\times 5}
Tuhia te \frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5} hei hautanga kotahi.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Whakareatia te 125 ki te 5, ka 625.
\frac{x^{4}-25x-x^{3}+25}{625}
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te x^{3}-25.
\frac{\left(x-1\right)\left(\left(\frac{x}{5}\right)^{3}-\frac{1}{5}\right)}{5}
Whakawehe x-1 ki te \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} mā te whakarea x-1 ki te tau huripoki o \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}}.
\frac{\left(x-1\right)\left(\frac{x^{3}}{5^{3}}-\frac{1}{5}\right)}{5}
Kia whakarewa i te \frac{x}{5} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(x-1\right)\left(\frac{x^{3}}{125}-\frac{25}{125}\right)}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5^{3} me 5 ko 125. Whakareatia \frac{1}{5} ki te \frac{25}{25}.
\frac{\left(x-1\right)\times \frac{x^{3}-25}{125}}{5}
Tā te mea he rite te tauraro o \frac{x^{3}}{125} me \frac{25}{125}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5}
Tuhia te \left(x-1\right)\times \frac{x^{3}-25}{125} hei hautanga kotahi.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{125\times 5}
Tuhia te \frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5} hei hautanga kotahi.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Whakareatia te 125 ki te 5, ka 625.
\frac{x^{4}-25x-x^{3}+25}{625}
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te x^{3}-25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}