Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x-1\right)\left(\left(\frac{x}{5}\right)^{3}-\frac{1}{5}\right)}{5}
Whakawehe x-1 ki te \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} mā te whakarea x-1 ki te tau huripoki o \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}}.
\frac{\left(x-1\right)\left(\frac{x^{3}}{5^{3}}-\frac{1}{5}\right)}{5}
Kia whakarewa i te \frac{x}{5} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(x-1\right)\left(\frac{x^{3}}{125}-\frac{25}{125}\right)}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5^{3} me 5 ko 125. Whakareatia \frac{1}{5} ki te \frac{25}{25}.
\frac{\left(x-1\right)\times \frac{x^{3}-25}{125}}{5}
Tā te mea he rite te tauraro o \frac{x^{3}}{125} me \frac{25}{125}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5}
Tuhia te \left(x-1\right)\times \frac{x^{3}-25}{125} hei hautanga kotahi.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{125\times 5}
Tuhia te \frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5} hei hautanga kotahi.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Whakareatia te 125 ki te 5, ka 625.
\frac{x^{4}-25x-x^{3}+25}{625}
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te x^{3}-25.
\frac{\left(x-1\right)\left(\left(\frac{x}{5}\right)^{3}-\frac{1}{5}\right)}{5}
Whakawehe x-1 ki te \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} mā te whakarea x-1 ki te tau huripoki o \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}}.
\frac{\left(x-1\right)\left(\frac{x^{3}}{5^{3}}-\frac{1}{5}\right)}{5}
Kia whakarewa i te \frac{x}{5} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(x-1\right)\left(\frac{x^{3}}{125}-\frac{25}{125}\right)}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5^{3} me 5 ko 125. Whakareatia \frac{1}{5} ki te \frac{25}{25}.
\frac{\left(x-1\right)\times \frac{x^{3}-25}{125}}{5}
Tā te mea he rite te tauraro o \frac{x^{3}}{125} me \frac{25}{125}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5}
Tuhia te \left(x-1\right)\times \frac{x^{3}-25}{125} hei hautanga kotahi.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{125\times 5}
Tuhia te \frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5} hei hautanga kotahi.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Whakareatia te 125 ki te 5, ka 625.
\frac{x^{4}-25x-x^{3}+25}{625}
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te x^{3}-25.