Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(x-3\right)=6\times 2
Me whakarea ngā taha e rua ki te 2.
x^{2}-3x=6\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-3.
x^{2}-3x=12
Whakareatia te 6 ki te 2, ka 12.
x^{2}-3x-12=0
Tangohia te 12 mai i ngā taha e rua.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-12\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-12\right)}}{2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+48}}{2}
Whakareatia -4 ki te -12.
x=\frac{-\left(-3\right)±\sqrt{57}}{2}
Tāpiri 9 ki te 48.
x=\frac{3±\sqrt{57}}{2}
Ko te tauaro o -3 ko 3.
x=\frac{\sqrt{57}+3}{2}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{57}}{2} ina he tāpiri te ±. Tāpiri 3 ki te \sqrt{57}.
x=\frac{3-\sqrt{57}}{2}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{57}}{2} ina he tango te ±. Tango \sqrt{57} mai i 3.
x=\frac{\sqrt{57}+3}{2} x=\frac{3-\sqrt{57}}{2}
Kua oti te whārite te whakatau.
x\left(x-3\right)=6\times 2
Me whakarea ngā taha e rua ki te 2.
x^{2}-3x=6\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-3.
x^{2}-3x=12
Whakareatia te 6 ki te 2, ka 12.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=12+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=12+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{57}{4}
Tāpiri 12 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{57}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{57}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{57}}{2} x-\frac{3}{2}=-\frac{\sqrt{57}}{2}
Whakarūnātia.
x=\frac{\sqrt{57}+3}{2} x=\frac{3-\sqrt{57}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.