Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-x-z\right)\left(x+z\right)-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Me whakarea ngā taha e rua o te whārite ki te \left(x-z\right)\left(-x-z\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-z,x+z,x^{2}-z^{2}.
-x^{2}-2xz-z^{2}-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -x-z ki te x+z ka whakakotahi i ngā kupu rite.
-x^{2}-2xz-z^{2}-\left(-x^{2}+2xz-z^{2}\right)=-z\left(2x^{2}+zy\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -x+z ki te x-z ka whakakotahi i ngā kupu rite.
-x^{2}-2xz-z^{2}+x^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Hei kimi i te tauaro o -x^{2}+2xz-z^{2}, kimihia te tauaro o ia taurangi.
-2xz-z^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Pahekotia te -x^{2} me x^{2}, ka 0.
-4xz-z^{2}+z^{2}=-z\left(2x^{2}+zy\right)
Pahekotia te -2xz me -2xz, ka -4xz.
-4xz=-z\left(2x^{2}+zy\right)
Pahekotia te -z^{2} me z^{2}, ka 0.
-4xz=-2zx^{2}-yz^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -z ki te 2x^{2}+zy.
-2zx^{2}-yz^{2}=-4xz
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-yz^{2}=-4xz+2zx^{2}
Me tāpiri te 2zx^{2} ki ngā taha e rua.
\left(-z^{2}\right)y=2zx^{2}-4xz
He hanga arowhānui tō te whārite.
\frac{\left(-z^{2}\right)y}{-z^{2}}=\frac{2xz\left(x-2\right)}{-z^{2}}
Whakawehea ngā taha e rua ki te -z^{2}.
y=\frac{2xz\left(x-2\right)}{-z^{2}}
Mā te whakawehe ki te -z^{2} ka wetekia te whakareanga ki te -z^{2}.
y=-\frac{2x\left(x-2\right)}{z}
Whakawehe 2xz\left(-2+x\right) ki te -z^{2}.