Whakaoti mō x
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+4\right)\left(x+4\right)=xx
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -4,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+4.
\left(x+4\right)^{2}=xx
Whakareatia te x+4 ki te x+4, ka \left(x+4\right)^{2}.
\left(x+4\right)^{2}=x^{2}
Whakareatia te x ki te x, ka x^{2}.
x^{2}+8x+16=x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+4\right)^{2}.
x^{2}+8x+16-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
8x+16=0
Pahekotia te x^{2} me -x^{2}, ka 0.
8x=-16
Tangohia te 16 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-16}{8}
Whakawehea ngā taha e rua ki te 8.
x=-2
Whakawehea te -16 ki te 8, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}